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' "Characterizing Containment and Rclated Classes of
Graphs

Edward R. Scheinenman

Department of Mathematical Sciences
The Johns Hopkins University

Baltimore. Maryland 21218 U.S.A.

ABSTRACT

A graph is a containment graph ifone can assign sets to its
vertices such that two vertices are adjacent if and only if a set
assigned to one contains the set assigned to the other. A contain-
ment class of graphs is formed by considering all containment
graphs for which the sets assigned to the vertices must be from a
prespecified family of sets. We presenj-characterization of con-
tainment classes of graphs: as weft as characterizations for overlap
and disjointedness classes. These results are compared with previ-
ous results on intersection classes of graphs.
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NCharacterizing Containment and Related Classes of
Graphs

Edward R. Schei'nernan

Department of Mathematical Sciences
The Johns Hopkins University

Baltimore, Maryland 21218 U.S.A.:

1. Introduction

This paper characterizes those classes of (finite, simple) graphs which arise

as containment graphs of sets of a given type. Our results are strikingly similar

to those in [Si] in which intersection classes are characterized.

Let Z be a collection of nonernpty sets. A graph G is called a E-

containment graph provided one can assign sets to the vertices of G so that two

vertices are adjacent if and only if a set assigned to one vertex contains the set

assigned to the other. More formally: we write v,-w when vertices V and w are

adjacent. A graph G is said to have a E-containment representation if there

exists a one-to-one function f: V(G)-E. such that v'-w if and only if f (v)cf (w)

orf (v)f (w). We denote by C(E) the class of aU 1.-6ontainment graphs.

It is known [LG1] that containment graphs have transitive orientations and

every transitively orientable graph is a containment graph. It follows that the

family of all transitively orientable graphs is the largbst containment class of

graphs. Our purpose in this paper is to characterize all contaimnent classes, i.e.

'" if G is a class of graphs, when does there exist a family of sets E2 such that
:": G= C(E).

In section 2 we discuss containment partially ordered sets. In sections 3

and 4 we develop our characterization of containment classes of graphs. In sec-

Lion 5 we drop the one-to-one assumption for containment representations. In

section 6 we relate this work to similar work on intersection classes of graphs.
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In section 7 we characterize overlap and disjointedness classes of graphs and

summarize our results. Finally, in section 8 we consider the problem of charac-

terizing-strong containment classes of graphs.

2. Containment Classes of Posets

A partially ordered set, or poset. is a set, P, together with an irreflexive,

anLisymmetric, transitive relation .<. We only consider finite posets in this

* paper. For a nonempty family of sets, E, a poset. P. is said to have a E-

containment representation provided there exists a one-to-one function f:P-.E

such that x<y in P if and only if f (x)cf (y). The family of all E-containment

posets is called a containrent class of posets and is denoted Cp(E). Our first

step is toward characterizing C(E) classes is to:characterize Cp(E) classes.

A poset, P. is called an induced subposet of P'. if PcP' and for z,yEP. X<y

in P if and only if x <y in P'. Our notation is P-<P'. A class of posets P is called.

monotone (or hereditary) provided PEP and P'- P imply P'EP.

Our first necessary condition is:.

LEMMA 1. Every containment class of posets is monotone.

PROOF. Obvious..

Our next necessary condition requires the following definitiom A composi-

tion sequence for a class of posets, P, is a sequence of posets Pf,P 2,P3 , " ""

such that (1) each PiEP, (2) Pi rPi4 for all i, and (3) if PEP then P__Pt for some

k:.

LEMMA 2. Every containment class of posets has a composition sequence.

PROOF. Let P=Cp(E) for some collection of sets E. Since F is countable we may

assume E is countable as well. [One readily checks that for any E there exists

E'cE with E' countable arid Cp(E)=Cp(E').] Let E= S., 5 ,S, [ Define

P x,, " ' ,xkl with xi<xj if arid only if S ,cS. Clearly each Pk is in Cp(E) and

[ 2
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S ~Pk-Pk+1. Further, if PEC,(Z). let f :P- ,E be a containment representation. Let

k=maxji:f(x)=S, xEPj. ClearlyP':Pk."

We now conclude by showing that these two conditions are sufnicient.

THEOREM 1. Let P be a family of posets. P is a containment class if.and only if P

" -" is monotone and has a composition series.

PROOF. The necessity of these two conditions having been proved, we turn to

demonstrating their sufficiency.

Let P 1:P2!P8- "• be a composition sequence for P. Since P is monotone,.

we may assume that IPk I =k and P,=z1 ... xk Let Sk=jy: ygxk. in some P,1.

Let .=jS 1 ,S 2,S,.. 3. One now checks that each Pk is a E-containment poset

with f :P-.E by f (xj)=St. Since every poset in.P is an induced subposet of some

Pk we have PcCp(E). One verifies the opposite. inclusion by considering an arbi-

trary PECp(E). There exists. I a representation f:P-E and put

k=maxii: f (x)=Sj, xEPl. Clearly P:P and since P is monotone, PEP. Thus

3. Preliminary Characterization

In this section we develop our characterization of containment classes of

graphs.

Given a poset, P, its comparability graph, r(P), has vertex set P and x-y

if and only if x <y or y <x. It is known that F(P) is the containment graph of the

set of order ideals JI(x): xEPj where I(x)=jy: y<-x . Moreover, it P is a E-

containment poset with representation f:P-*E then r(P) is a E-coritaiument

graph with the same function as its representation.. Finally, the partial order on

P induces a natural transitive orientation of F(P) where x-y if and only if X>y.

We can use these known ideas to translate our poset results into graph results
V.

by observing C(E)=I'(Cp(E)).

............................................ ,
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A graph G is an induced subgraph of I provided V(G)cV(Ii) and

E(G)=z'y:x.yEV(G) and ycEi-(H)I. We write G_5.H in this case. A class of

graphs U is monotone (or hereditary) if G:HcG implies GEG.

LEMMA 3. If U is a containment class of graphs then G is monotone.

PROOF. Obvious.

A composition sequence for a class of graphs G is a sequence Gt,G 2,G3, .

-with (1) each GjEG, (2) CGt G for all i. and (3)-if GEG then G G,% for some k. A

composition sequence is called coherently transitively orientrzble provided

each graph in the sequence can be transitively oriented so that. x-'y in Gj

implies --iY in Gj+j.

LEMMA 4. If G is a containment class of graphs then G has a coherently transi-

tively orientable composition sequence.

PROOF. Let G=UC(E) and let P=Cp(E).. By lemma 2 P has a composition sequence

,Pj--!_Ps. ••.Put G=I'(P) for all i. It is immediate that G,!Ge 2" •" is a cor-

* position sequence for G. Moreover, the natural orientations inherited from the

Pi's form a coherent transitive orientation for the sequence. u

As in the poset setting, the two conditions together are sufficient.

THEOREM 2. Let G be a class of graphs. G is a containment class if and only if U

is monotone and has a coherently transitively orientable composition sequence.

PROOF. The necessity is established in lemmas 3 and 4..

Suppose G is monotone and has G G G2 ' ... as its composition sequence.

Orient each graph transitively so that the orientations are coherent. Each graph

G in G can be transitively oriented since GkCk for some k and we orient G

according to the orientation of G. Thus every graph in G has been given a tran-

sitive orientation.

A transitively oriented graph G cani be considered a poset P vifh x >y if and

only if x-,y. [In a sense, P=I'-(G).] The class I' of all posets derived in this way

.
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from G is clearly monotone with composition sequence P1 P 2!.. Thus, by

theorem 1. P is a containment class of posers, P=Cp(E). It follows easily that

"" G=(I'P) and so C=C(F).

4. An Atkernate Characterization

In the previous section we found necessary and sufficient conditions which a

class of graphs must satisfy in order to be a containment class. In some

respects this solves the problem at hand. However, the coherence part of the

"coherently transitively orientable" condition is, in general, difficult to directly

verify. Even if we know that all the graphs in our class:are transitively orient-

able, it is not clear that we can gixa a coherent orientation to the graphs in the

sequence. For example, if we orient G1, and then attempt to extend that orienta-

Lion to G2. and then to G3, etc. we are doomed to failure. Such a failed construc-

tion is depicted in figure 1. One cannot be greedy when constructing a transitive

orientation for a graph. In this section we present a more tractable characteri-

zation.

A countable graph is a graph whose vertex set we allow to be finite or count-

ably infinite. Given a sequence of graphs G<GG2.G"•. we define the limit of

this sequence to be the countable graph whose vertex set is the union U V(Gi) in

which x-y if and only if they are adjacent in some Gk and one writes G=lim Gi.

Note that every finite induced subgraph of the limit graph G is an induced sub-

graph of some Q.

It is clear that a transitive orientation for the limit graph implies a

coherent transitive orientation for the individual graphs in the sequence. The

converse, however, is also true:

LEMMA 5. A sequence of graphs G1 cG 2-5G8 ~ . .. has a coherent transitive orien-

l tation if and only if Hlt Gi has a transitive orientation.

. . . . . . . . . . .a ". .. .. -.. . . . . .. . . . . .. . . . . .... ,, ......- ,.......-,.... ,.,
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PROOF. This follows immediately from the characterization of comparability

graphs (which are exactly the transitively orientable graphs) of Gilmore and

flofiman [Gil]. Their characterization, which applies to finite as well as to infinite

graphs, states:

A graph is a comparability graph if and only if each odd "cycle'? has at least

one triangular chord. [Here, a "cycle" may retrace over edges. A "triangular

chord" is an edge of the form Vii4. ]

One need only note that this condition is "locally finite" and a graph fails to

be transitively orientable if and only if some finite induced subgraph is not tran-

sitively orientable.

We can now state our alternate characterization:

THEOREM 3. A class of graphs is a containment class if and only if it is a mono-

tone class of transitively orientable graphs with a composition sequence.

PROOF. The necessity of these conditions is immediate. Suppose G is monotone.

contains only transitively orientable graphs and has G1gG 2 •• as a composi-

tion sequence. By theorem 2, we need only show that the sequence is coherently

transitively orientable. We know that each Gj has a transitive orientation. Let

G=Iim Gi. Observe that G must have a transitive orientation, for otfher-wise one

of its finite induced subgraphs would fail to have a transitive orientation. Orient

G transitively. Now assign to each Gj the orientation it ilihcrcnts from G.

Clearly the sequence now has a coherent transitive orienLation.

5. Woninjective Containment R.epresentalions

In the introduction of this paper we required X-coutL.intmetL rcpresetla-

Lions f:V(G)-Z to be one-to-one. In this section we drop this restriction. If

f:V(G)-Z satisfies v,-w if and only if f (v)cf (D) or f (v)_f (7v) then f is called

a f7toivjectiue E-containnent representation of G. We denote the class of all

,4

4.- . -
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such graphs C*(.). Clearly C*(E))C(I). In this section we characterize these

noninjective containment classes.
., 4

It is clear that every noninjective containment class is monotone. It also

follows that it has a composition sequence, although we can no longer rely on

posets for our proof. Instead, we may assume that Z is countable and equals

JSI.S2,S3 . We define Gk to be a graph with k2 vertices vij with 1cij:5k.

We put v(,.v i if and. only if SiCSr or S jSr. Clearly each QkEC*(E). Furthcr-

more, if GCC*(E) with f:V(G)-E as its noninjective representation, then let

k,=maxji: f (v)=Sv, vEV(G)j, kp=max If-'(S1 aid k=max[1c1 ,kz. One now

checks that G -G , hence GjG9G 2 *•. is a composition sequence.

It now follows by theorem 3 that every noninjective containment class is a

containment class of graphs. That is, given ', there exists E' so that

C"(E)=C(V'). The converse, however, is not true. For example, let G denote the

class of graphs each of whose connected components is a path. By theorem 3,

this is a containment class of graphs. It is not, however, an injective contain-

.'. inent class for it fails to. satisfy one more critical property of noninjective con-

tainment classes which now develop.

Given a graph G we can define an equivalence relation on its vertices as fol-

lows: If vw G we write vkw provided either (1) v=o or else (2) vw and for

all other vertices z, z-v if and only if z-..w. Next. -we define pG to be the graph

G reduced modulo P, i.e., pG is an induced subgraph of G formed by taking one

vertex in each P equivalence class. Since all such induced subgraphs are iso-

morphic, pG is uniquely defined. If lt=pG we also say that G arises from H1 by

cliquze vertex expansion (see [Si]).

LEMMA 6. Let U be an injective containment class, G=C*('). If GEC and If

arises from G by clique vertex expansion, then HHEG. (We say G is closed under

clique verLex expansion.)

. -.
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PROOF. We have G=pH. Let f:V(G)--E be a nonhijective containment represen-

tation. Each vertex v of G corresponds to a N equivalence class v . 1, .vtj in

Hi. Definef'(v1 )=f (v). One now checks that f':V(II)-E is a noninjective con-

tainment representation..

We now present our characterization.

THEOREM 4. A class of graphs is a nonLnjective contairnent class if and only if it

is a monotone class of transitively orientable graphs with a composition series

which is closed under clique vertex expansion.

PROOF. The necessity of these conditions has just been established. Suppose. G

satisfies these conditions. Notice that by theorem 3 G is a (injective) contain-

ment class, G=C(E). We claim that G=C*(E).

Clearly GCC* (E). Suppose GEC* (S) and let f: V(G)-E be a noninjective con-

tainment representation. Since pG _G it follows that restricting f to V(pG) we

have a containment representation of pG. One readily verifies that no pair of

distinct vertices of pG are F equivalent. Therefore the restriction of f to V(pG)

must be one-to-one (for if f (v)=f (w) we would have v~w). JIencepGEC(E)=U.

Since G is closed under clique vertex expansion, it follows that GEG=C(E). thus

Although C(E)=C*(E) in the proof above, this is not true in general. For

exarnple, if G is the class of graphs each of whose components is a path, we can

verify that G is a containment class but is not a noninjective containment class.

In this case G=C(E) for some E and C(Z)cC' (Z), but C(Z)$C"(Z).

6. Uoataimnent Cia~scs and Intcrsecio'a Classes

The following related problem was discussed in [Si] (with slightly different

* notation). A one-to-one function f: V(G)-E is called a E-intersect in reprUsen-

tation of G if and only if for all vertices v,w we have v-iw if and Linly if

-. .. --
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" f(v)nf (w)-V. G is called a E-intersection. graph and tile class of all such

graphs is called an intersection class and is denoted Q(Z). dso, when we relax

the one-to-one assumption, we arrive at the notion of noninjeetive intersectiox

classes, 0* (E).

THEOREM 5 []]. A class of graphs is an intersection class if and only if it is

monotone and has a composition series. It is a noninjective intersection class if

and only if it is an intersection class which is closed under clique vertex expan-

* .sion.

The striking similarity of this result and those of theorems 3 and 4 gives the

following corollary:

COROLLARY. The [noninjective] containment classes of graphs are exactly the

[noninjective] intersection classes of graphs whose members are all. transitively

orientable.

- 7. Tuo Further Classes

*It is natural when considering containment and intersection -representa-

tions of graphs to consider two further representation schemes.

First, a graph is said-to be a E-overlap graph, if it has a .-overlap represen-

tation: a one-to-one function f:V(G)-E2 such that v-w if and only if f(v) over-

laps f(w). i.e. f(v)if(v)flf(w)f (w) and f(v)Nf(w)M . We denote the

family of all L-overlap graphs O(E). If we allow the function f to not be one-to-

one, we arrive at the family of all noninjective E-overlap graphs 0* (E).

Second, a graph is said to be a Z-disjointedness graph if it has a E-

disjointedness representation: a one-to-one function f:V(G)- Z such that v -w

if and only if f(v)-rlf(wv)=O. The family of all E-disjointedness graphs is

denoted A(E). lly analogy, the famnily of all nonirjcctive .-disjointedness graphs

is denoted A*()). We wish to characterize these [noninjective] overlap and dis-

~~~~~~~~~~~~. . . . . . . . . . . . . .. . . ... -. . -.. -- - - .- - : , - ..,, "" "' " 7""""
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jointedness classes.

It is immediate that a graph G is a E-disjointedness graph if and only if G is

a E-iitersection graph. Since GfIt if and only if G<H, it follows from theorem 5

that a class of graphs is a disjointedness class if and only if it is monotone and

has a composition series. Thus the disjointedness classes are exactly the inter-

section classes.

In order to characterize noninjective disjointedeiss classes we need to

introduce an alternative notion of vertex expansion. Since assigning the sante

set to several vertices results in a stable set of vertices with the same neighbors,

we define a second notion of vertex equivalence. Given two vertices v,w in a

graph G we write v-zw if and only if v and w are not adjacent [this includes the

case v=w#] and for all vertices u we have u -v i! and only if u -w. Denote byp'G

the induced subgraph of G formed by taking one vertex per -= equivalence class.

If G=p'It we say H arises from G by stable vertex expansion. These definitions

can be summarized as follows: v=w in H if and only if v w in 11, and G=p'lt if

and only if G=pH. The following is now obvious:

TIIEOREM 6. A class of graphs is a [noninjective] disjointedness class if and only

if it is monotone, has a composition sequence [and is closed under stable vertex

expansion].

Next we consider overlap classes of graphs. One can readily check that an

overlap class must be monotone and have a cornposiLion series. Thus every

overlap class must be an intersection class (as well as a disjointedness class).

lotevar, every intersection class can be transformed into a overlap class by the

following construction. Let G=O((E) and we may suppose S is countable,

=SIS2,' . Let X=xiXl 2 , be a set of elements, in one-to-one

correspondence with those in E, but no Tt is in any Sj for all i,j, i.e.

X U i = .S Let 7'=S, j ziI and put E'=T ,7"'2, [ One now verifies Lht
. :..tl~



,)O(E'). Thus the overlap classes are exactly the intersection classes.

Finally we consider noninjective overlap classes. It is immediate that they

arc monotone, have composition sequences and are closed under stable vertex

expansion. Suppose now that a class 0 has these three, properties. It follows

that 0 is an intersection class O(E). We add an extra element to each of the sets

in E as before to form V. It is trivial that C(J(E)=(E)cO*(E'). On the other

hand, if GEO'(E'), then p'G is also in that class. In fact p'GEO(E') since no two

vertices of p'G can be - equivalent. Thus p'GEG and since G is closed under

stable vertex expansion, GEG, hence GDO*('); In summary,

THEOREM 7. A class of graphs is a [noninjective] overlap, class if and only if it is

monotone, has a composition sequence [and is, closed under stable vertex expan-

sion]..

There is no difference between overlap classes and idisjointedness classes!

This is not to say O(Z)=A(E) for arbitrary E.

We can summarize our results thus far as follows. The properties we have

considered are:

(1) monotone,
(2) has a composition sequence,
(3) contains only transitive orientable graphs,
(4) is closed under clique vertex expansion, and
(5) is closed under stable vertex expansion.

The classes we have discussed and their necessary and sufficient conditions are:

CLASS PROPERTIES IF NONINJECTIVE

Containment 1,2,3 1,2,3,4

Intersection 2,3 2,3.4

Overlap 2,3 2.3,5

Disjointedness 2,3 2,.,5

I L ,'. " - I  ~.. .,. .. .. . . . . .'" -"•" -"""-' ""-',
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A class of graphs which satisfies all five properties would be simultaneously

a containment, intersection, overlap and disjointedness class of both the injec-

Live and noninjective varieties. For example, the family of all transitively orient-

able graphs (or comparability graphs) can be represented in the following ways.

Let E, denote the family of all subtrees of a tree and let E2 denote the family of

all cartesian g:aphs of continuous real value functions (i.e., the curves in the

plane which are also referred to as graphs). From [Gav]..[G1] and [G2] it follows

"-" that:

all equal the class of transitively orientable graphs!

, B. On Characterizing Strong Containment Classes

In [Gi] Golumbic defines a notion of strong containment class (essentially)

as follows: a containment class C(E) is strongif every transitive orientation of

each graph in C(E) is in P(E). In other wordsi inherent with every containment

representation of a graph is a transItive orientation "induced" by the contain-

ment relations of the sets assigned to the vertices. A containment class is

strong if all possible transitive orientations for each graph in the class can arise

in this manner. Golumbic [Gi] shows that the. containment graphs of real inter-

vals form a strong containment class, while' the containment graphs of edge

paths in trees does not form a strong class.

It would be very desirable to have a characterization of strong containment

classes similar to our characterization of containment classes. In this section

we show that no such characterization is possible! The notion of a containment

class of graphs is an intrinsic one: One need only examine the class of graphs G

to determine if it is a containment class. However, the notion of strong contain-

xment class is an extrinsic one; it depends on the sets in E. One cannot say

'* whcther or not a containmicnt class 0 is strong or not. Wie prove this by show ing

~~~~~~~~~~~~~~~~~~~~.,...-'......... .... .. € ,.. .... .....-.-. .- ,, . :- . . . . _.



that there exist two families of sets Z and V with C( )C( ') where C(E) is not a

strong containment class but C(E') is a strong containment class.

Let Z, be the family of all edge paths in trees (see [#]). Let, U=C(E). We

know that C(Z) is not a strong containment class. We can easily check that G is

closed under disjoint union, i.e. if G and H are in G then their disjoint union is

also in G. Let P denote the class of posets formed by taking all possible transi-

*tive orientations of all graphs in G. Clearly P is monotone, and closed under dis-

joint union of posets. Let Pi denote the disjoint union of all posets in P with at

most i elements. It follows that PI P2 -• is a composition sequence for P.

hence there exists a set E' with P-Cp(Z'). One now checks that G=C(E)=U(E')

and that c(') is a strong containment class!

Thus it is impossible to characterize classes of graphs G as strong or not

strong containment classes; the notion is not intrinsic to the class G, but is

extrinsic, i.e.,.it depends on how the class is represented. This leaves us with a

more difficult problem: Characterize those family of sets Z such that C(Z') is (or

is not) a strong containment class.

2 4

Figure 1.

'
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